Astronomical objects are naturally occurring physical entities, associations or structures that current science has demonstrated to exist in outer space. The term astronomical object is sometimes used interchangeably with astronomical body. Typically an astronomical body refers to a single, cohesive structure that is bound together by gravity (and sometimes by electromagnetism). Examples include the asteroids, moons, planets and the stars. Astronomical objects are gravitationally bound structures that are associated with a position in space, but may consist of multiple independent astronomical bodies or objects. These objects range from single planets to star clusters, nebulae or entire galaxies. A comet may be described as a body, in reference to the frozen nucleus of ice and dust, or as an object, when describing the nucleus with its diffuse coma and tail. In a strict sense, the terms astronomical objects and astronomical bodies differ from celestial objects and celestial bodies only in that the latter terms do not include the Earth. However in a broader sense, these terms may be regarded as synonyms, since many sources don't make this distinction, considering planet Earth as a celestial body.
he constituents of a galaxy are formed out of gaseous matter that assembles through gravitational self-attraction in a hierarchical manner. At this level, the resulting fundamental components are the stars, which are typically assembled in clusters from the various condensing nebulae. The great variety of stellar forms are determined almost entirely by the mass, composition and evolutionary state of these stars. Stars may be found in multi-star systems that orbit about each other in a hierarchical organization. A planetary system and various minor objects such as asteroids, comets and debris, can form in a hierarchical process of accretion from the protoplanetary disks that surrounds newly created stars.
The various distinctive types of stars are shown by the Hertzsprung-Russell diagram (H-R diagram), which is a plot of absolute stellar luminosity versus surface temperature. Each star follows an evolutionary track across this diagram. If this track takes the star through a region containing an intrinsic variable type, then its physical properties can cause it to become a variable star. An example of this is the instability strip, a region of the H-R diagram that includes Delta Scuti, RR Lyrae and Cepheid variables. Depending on the initial mass of the star and the presence or absence of a companion, a star may spend the last part of its life as a compact object: either a white dwarf, neutron star or black hole.
No comments:
Post a Comment